Theoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles

نویسندگان

  • Kai Liu
  • Xiaozheng Xue
  • Edward P. Furlani
چکیده

We study optical properties of near-infrared absorbing colloidal plasmonic nanostructures that are of interest for biomedical theranostic applications: SiO2@Au core-shell particles, Au nanocages and Au nanorods. Full-wave field analysis is used to compare the absorption spectra and field enhancement of these structures as a function of their dimensions and orientation with respect to the incident field polarization. Absorption cross-sections of structures with the same volume and LSPR wavelength are compared to quantify differential performance for imaging, sensing and photothermal applications. The analysis shows that while the LSPR of each structure can be tuned to the NIR, particles with a high degree of rotational symmetry, i.e. the SiO2@Au and nanocage particles, provide superior performance for photothermal applications because their absorption is less sensitive to their orientation, which is random in colloidal applications. The analysis also demonstrates that Au nanocages are advantaged with respect to other structures for imaging, sensing and drug delivery applications as they support abundant E field hot spots along their surface and within their open interior. The modeling approach presented here broadly applies to dilute colloidal plasmonic nanomaterials of arbitrary shapes, sizes and material constituents and is well suited for the rational design of novel plasmon-assisted theranostic applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

Colloidal plasmonic back reflectors for light trapping in solar cells.

A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic ...

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO).

The influence of particle shape on plasmonic response and local electric field strength is well-documented in metallic nanoparticles. Morphologies such as rods, plates, and octahedra are readily synthesized and exhibit drastically different extinction spectra than spherical particles. Despite this fact, the influence of composition and shape on the optical properties of plasmonic semiconductor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016